Comparison of Hydroxyapatite Deposits in Primate and Human sub-RPE Deposits

Richard B. Thompson *1, Lajos Csincsik2, Kavita Hegde3, Trevor J. McGill4, Martha Neuringer4, Adam Puche5, Matthew Pilgrim2 and Imre Lengyel2 *2 rthompson@som.umd.edu; i.lengyel@ucl.ac.uk

1Dept. Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201 USA; 2Institute of Ophthalmology, University College London EC1Y 8TB London, UK; 3Dept. of Natural Sciences, Coppin State University, Baltimore, MD, 21216, USA; 4Oregon National Primate Research Center and Casey Eye Institute, OR 97006 USA; 5Dept. Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA

Purpose: While sub-RPE deposits such as drusen are widely accepted as precursors to age-related macular degeneration (AMD), the molecular events that initiate deposit formation have not yet been fully elucidated. We recently discovered that sub-RPE deposits in human cadaver eyes have microscopic spherules of hydroxyapatite (HAP, also called hydroxyapatite), the hard, insoluble form of calcium phosphate found predominantly in bones and teeth. These spherules are distinct from the well-known calcification of the Bruch’s membrane itself. In this study we compared the morphology and incidence of HAP deposition in human and macaque retinas.

Methods: HAP deposition was visualized by the use of LiCor BoneTag 680RD or Alizarin Red S, two bone stains that fluoresce when bound to HAP. We labelled unfixed and fixed macaque and human flatmounts of Bruch’s membrane/choroid complexes after the removal of the neurosensory retina and the RPE or sections from whole eyes. We examined eyes from ages ranging 16 to 38 years (comparable to 48 to 114 years in humans) for primates and 34 to 95 years for humans. In some cases fundus photographs of the macaques were available. HAP deposition was imaged by scanning the flatmount using the Odyssey system from LiCor and bright field and fluorescence confocal microscopy.

Conclusions: Our results show that HAP deposition is present in both primate and human eyes with similar distribution. The reduced numbers of spherules and particularly hollow spherules in primates compared to fresh human tissue suggest that the molecular events involved in deposit formation in primate and human eyes are similar but not identical. Our results clearly indicate that fresh tissues with short post-mortem time are preferable when analyzing HAP deposition in the eye.

Acknowledgments: The authors are grateful to the following for their financial support: the Bright Focus Foundation (R.B.T., I.L.); NIH T35 DK 905727-02 (SPORT Program; J.T.); RB (T.J.M.); the Foundation Fighting Blindness and NIH PS1 OD 011092 (M.N.); and the Bill Brown Charitable Trust, the Mercer fund from Fight for Sight, and the Eye Charity of Moorfields Eye Hospital (I.L.) and an unrestricted grant from OPTOS Plc. (I.L.). The authors also thank Dr. Goldis Malek from Duke University for providing the section with AMD and Dr. Joseph Mauban of the Maryland CBIR for help with confocal microscopy.

The authors all declare no competing financial interest and certify that all research was conducted in accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research.

A schematic diagram of the initiation of sub-RPE deposit formation. Deposit formation is initiated by the deposition of HAP (magenta) onto lipid (cholesterol) droplets (blue). Consequently different proteins (green) bind to the HAP surface, which facilitate further deposition in a self-driven oligomerisation process ultimately to form the visible deposit (yellow-green).

Whole-mount human Bruch’s membrane labelled with the HAP selective BoneTag 680 fluorescent dye. A: 70 year old donor samples without significant HAP deposition; B: 68 year old donor samples with extensive HAP deposition especially in mid periphery; C-D: 79 year old donor with extensive HAP deposition throughout labelled with BoneTag680 (C) and BoneTag800 (D). Images were generated by the LiCor Biosciences Odyssey 9120 Infrared Imaging System.